
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING LAB MANUAL Analog Circuits Lab II - B. Tech. II - Semester

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous, Accredited by NBA & NAAC, an ISO 9001:2008 certified institution) (Sponsored by Siddhartha Academy of General & Technical Education) VIJAYAWADA – 520 007, ANDHRA PRADESH

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING ANALOG CIRCUITS LAB

Course Code	20EC3451	Year	II	Semester	II
Course Category	Program Core	Branch	ECE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	EDAC
Continuous Internal Evaluation	15	Semester End Evaluation	35	Total Marks	50

Course	Outcomes SID HARTHAINS 77
Upon s	uccessful completion of the course, the student will be able to
CO1	Analyze the feedback amplifiers using FET (L4)
CO2	Evaluate the performance of Power Amplifiers using BJT(L5)
CO3	Design the various applications using Op-amp (L6)
CO4	Design the various applications using IC 555 Timer (L6)
CO5	Make an effective report based on experiments.

I.

PR/

DGY

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - A	verag	e valu	e indio	cates c	ourse	corre	latior	strei	ngth w	ith ma	apped	PO	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1			3				3				3	
CO2				2	3				3				3	
CO3			3		3				3				3	
CO4			2		3				3				3	
CO5										3				
Average* (Rounded to nearest integer)		1	3	2	3				3	3			3	

LIST OF EXPERIMENTS

	Syllabus					
Expt. No.	Contents	Mapped CO				
Ι	Calculation of gain, input resistance, output resistance of a feedback amplifier with and without feedback using FET	CO1,CO5				
II	Design and verify an RC phase-shift oscillator for a given frequency using Op-Amp	CO3,CO5				
III	Design and verify a Wein-bridge Oscillator for a given frequency using Op-Amp	CO3,CO5				
IV	Design and verify a Colpitt's Oscillator for a given frequency using Op- Amp	CO3,CO5				
V	Evaluate the Conversion efficiency of a Class A power amplifier using BJT	CO2,CO5				
VI	Evaluate the Conversion efficiency of Class B Push - pull power amplifier using BJT	CO2,CO5				
VII	Design and Simulate the RC differentiator using Op-Amp	CO3,CO5				
VIII	Design and Simulate the RC integrator using Op-Amp	CO3,CO5				
IX	Design and verify Adder and Subtractor circuits using Operational Amplifier	CO3,CO5				
Х	Design and verify an Astable multivibrator using 555 timer	CO4,CO5				
XI	Design and verify Monstable multivibrator using 741Op-Amp	CO3,CO5				
XII	Design and verify Monstable multivibrator using 555 timer	CO4,CO5				
XIII	Design and verify an Astable multivibrator using 741 Op-Amp	CO3,CO5				
XIV	Design and verify LPF and HPF using Op-Amp	CO3,CO5				
XV	Design and verify a 4 bit DAC using OP-Amp	CO3,CO5				

Learning Resources

Text Books

1. Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e,Oxford

University Press, 2013.

2. D Choudhury Roy, Shail B. Jain, Linear Integrated Circuits, New Age International, 2003

3. Ramakanth Gayakward, Op-Amps and Linear Integrated Circuits, 4/e, Pearson Education,2007

Reference Books

- 1. Behzad Razavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. R.F Coughlin, F.F Driscoll, Op-Amps and Linear Integrated Circuits, 6/e, Pearson, 2008.
- 3. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3/e,Tata Mc-Graw Hill, 2002.

INSTRUCTIONS TO THE STUDENTS

1. Students are required to attend all labs.

2. Students have to bring the lab manual cum observation book, record etc. along with them whenever they come for lab work.

3. Should learn the prelab questions. Read through the lab experiment to familiarize themselves with the components and assembly sequence.

4. Should utilize 3 hours' time properly to perform the experiment and to record the readings. Do the calculations, and take signature from the instructor.

5. If the experiment is not completed in the stipulated time, the pending work has to be carried out in the leisure hours or extended hours.

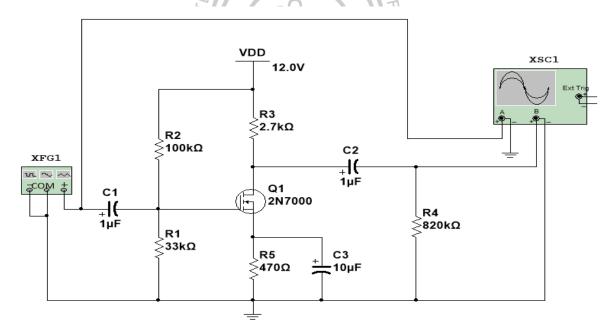
6. Should submit the completed record book according to the deadlines set up by the instructor.

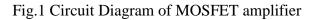
7. For practical subjects there shall be a continuous evaluation during the semester for 15 internal marks and 35 end examination marks.

8. Out of 15 internal marks, 10 marks shall be awarded for day-to-day work and 5 marks to be awarded by conducting an internal laboratory test.

FET AMPLIFIER WITH AND WITHOUT FEEDBACK

AIM:


To obtain gain, input resistance, output resistance of a feedback amplifier with and without feedback using FET.


DHARTHA INS 7

Experimental Requirements:

MOSFET -2N7000
Resistors
Capacitors
Regulated Power Supply
CRO

Circuit Diagram:

Design:

Assume $V_{DD}=12V$, $V_{RD}=5v$, $V_{DS}=6V$, $I_D=2Mamp$

$$R_D = \frac{V_{RD}}{I_D} = \frac{5}{2 \times 10 \times 10^{-3}} = 2.5 k\Omega, \text{ Use } 2.7 \text{k}\Omega \text{ resistor}$$

Now the voltage across the source side resistance $V_{RS} = V_{DD} - V_{DS} - V_{RD} = 12-6-5=1V$

As, $I_S = I_D$ (No current flows through the gate)

$$R_S = \frac{V_{RS}}{I_D} = \frac{1}{2 \times 10 \times 10^{-3}} = 500\Omega$$
, Use 470 Ω resistor

Voltage- divider bias circuit design:

Assume $R_1=100k\Omega$. By, Voltage Division rule, R_2 can be obtained as,

$$V_G = V_{DD} \times \frac{R_2}{R_1 + R_2}$$

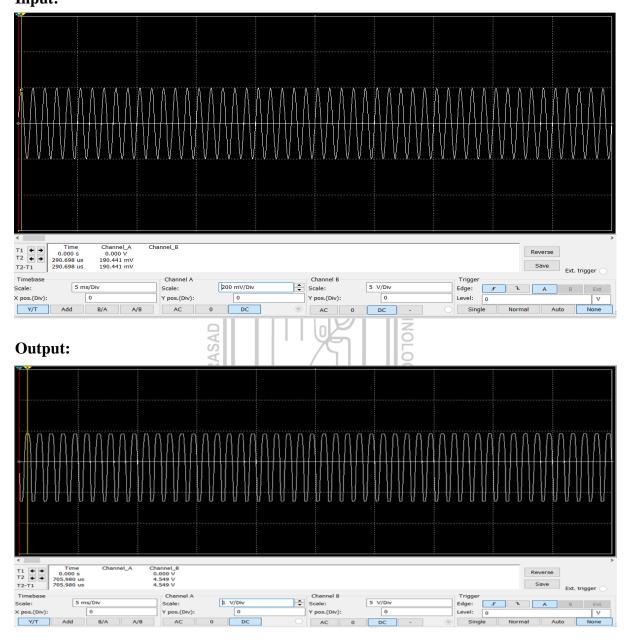
Selecting the value of V_G as 4V

$$4 = 12 \times \frac{R_2}{100 \times 10 \times 10^3 + R_2} \\ R_2 \sim 47 k\Omega$$

Design of capacitors: Assume impedance of coupling capacitor be $H_{C1} \ll 1.5k\Omega$ Therefore, $\frac{1}{2\pi f C_1} \leq 1.5k\Omega$ i.e., $\frac{1}{2\pi f C_1 2\pi f C_1} \leq 1.5k\Omega$ Given, the frequency of the input signal is 100Hz. $C_1=1.06\mu f$. Let $C_1=C_2=1\mu f$ For the bypass capacitor, $X_{cs} = \frac{1}{2\pi f C_s} \leq 150\Omega$ $C_s= 10\mu f$

Procedure:

1. Set up the circuit as shown in the figure.


2. Apply an input signal of 0.2V (peak-to-peak) at 1000 Hz.

3. Observe the output on the CRO.

4. Vary the frequency of the input signal over a range of values (from 50Hz to a few MHz).

5.Obtain the frequency response which is a graph between frequency (x- axis) and gain in dB (y-axis).

Model Waveforms: Input:

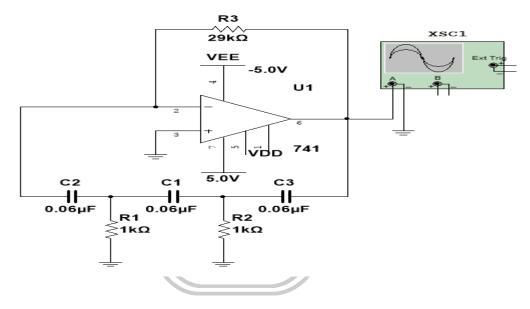
<u>Observations:</u> With Feedback

Frequency(Hz)	Output Voltage V ₀	$Gain = \frac{V_0}{V_i}$	Gain in dB $20\log(\frac{V_0}{V_i})$
Without Feedback	SIDDHART	HA INS TITU	

Without Feedback

Frequency(Hz)	Output Voltage Vo	$\operatorname{Gain}=\frac{V_0}{V_i}$	TECHNOL	Gain in dB $20\log(\frac{V_0}{V_i})$
	ese Vijay	సి ⁴ భవ WADA	DGY	

Precautions:


- 1. Avoid loose connections
- 2. Don't switch on power supply while making connections
- 3. Handle components carefully

RC PHASE SHIFT OSCILLATOR

<u>AIM:</u> To design an RC Phase Shift oscillator using op-amp for a given frequency

Experimental Requirements: Op-amp-741C Resistors Capacitors Fixed Power Supply -12V- 0-+12V CRO

Circuit Diagram:

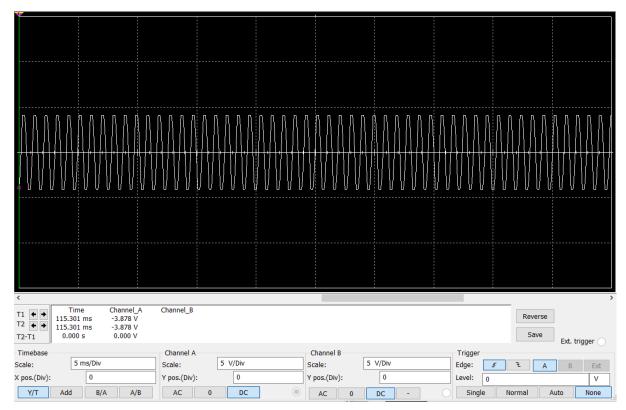
Design:

The gain of feedback network is $\beta = \frac{1}{29}$.

To meet the greater than unity loop gain requirement, the closed loop voltage gain of op-amp must be greater than 29. That is $-(\frac{R_F}{R_1}) \ge 29$

 $R_F \ge 29 R_1$

Assume R₁, find out R_F


The frequency of output $f_0 = \frac{1}{2\pi BC\sqrt{6}}$

For a given frequency, assume C, find out value of 'R'

Procedure:

- 1. On a bread board set up the circuit as shown in the figure.
- 2. Obtain the sine wave in CRO.
- 3. Note down time period of sine wave & calculate its frequency
- 4. Compare theoretical and practical frequencies

Wave Forms:

Precautions:

- 1. Avoid loose connections
- 2. Do not switch on power supply while making connections
- 3. Handle components and apparatus carefully

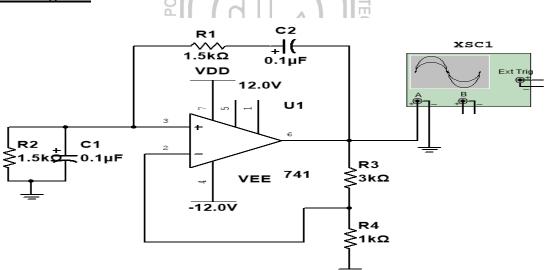
WEIN BRIDGE OSCILLATOR

AIM:

To design Wein Bridge oscillator using op-amp for a given frequency.

Experimental Requirements:

1. Op-amp-741C


2.Resistors

3.Capacitors

4.Fixed Power Supply -12V- 0-+12V

5.CRO

Circuit Diagram:

Design:

The gain of feedback network is $\beta = 1/3$.

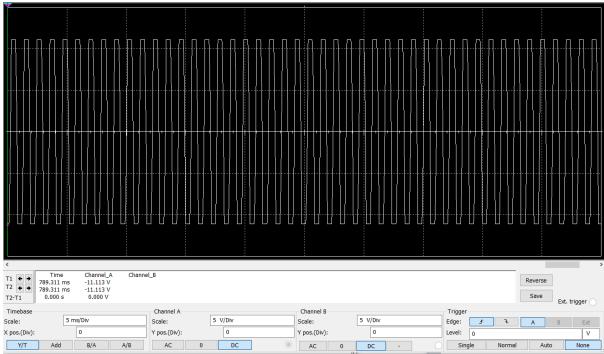
To meet the greater than unity loop gain requirement, the closed loop voltage gain of op-amp must be greater than 3. That is $1+(R_F/R_1) >= 3$

$$R_F \ge 2 R_1$$

Assume R₁, find out R_F

The frequency of output $f_0 = \frac{1}{2\pi RC}$ For a given frequency, assume C, find out value of 'R'

Procedure:


1.On a bread board, set up the circuit as shown in the figure.

2.Obtain the sine wave in CRO

3.Note down time period of sine wave & calculate its frequency

4. Compare theoretical and practical frequencies

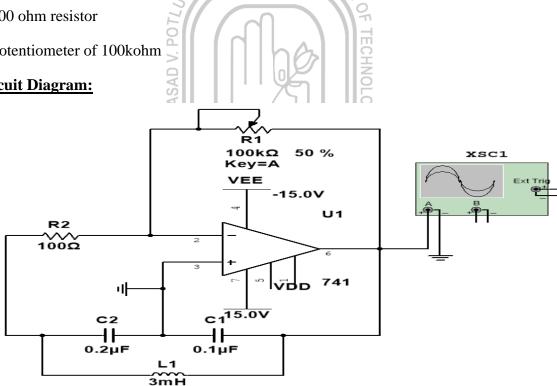
Wave forms:

Precautions:

- 1. Avoid loose connections
- 2. Do not switch on power supply while making connections
- 3. Handle components and apparatus carefully

STUDY OF COLPITTS OSCILLATOR

AIM:


To design and setup a colpitts oscillator using Op-amp and to observe the sinusoidal output waveform.

SIDDHARTHA INS TI

Experimental Requirements:

- 1. Power- supply
- 2. Oscilloscope
- 3. Operational amplifier (µA741)
- 4. Decade capacitor
- 5. Decade inductor
- 6. 100 ohm resistor
- 7. Potentiometer of 100kohm

Circuit Diagram:

Design Procedure:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Assume C, find out the value of L

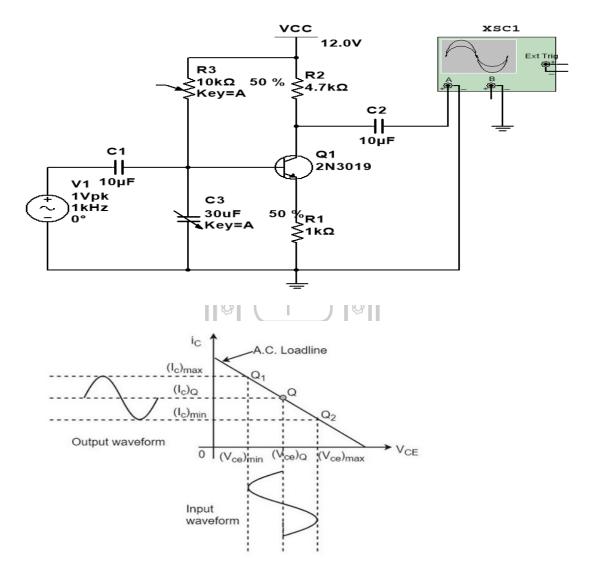
Procedure:

- 1. Connect the circuit shown in Fig, with L=3mH, Cl=C2=2 μ F. Draw the output & measure (f_o).
- 2. For C1=C2=2 μ f, vary (L) from (3 to 9)mH. Then measure output frequency in each case.
- 3. For L=3mH, C2=2 μ F, vary Cl from (2 μ F to 8 μ F). Then measure output frequency in each case.
- 4. For L=3mH, C1=2 μ F, vary C2 from (2uF to 8 μ F). Then measure output frequency in each case.

Waveform:

Y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
Channel_A Channel_A Channel_A Channel_A Channel_A Channel_A Channel Channel Channel_A Channel Channel_A Channel Channel_A Channel Channel_A Channel Channel_A Channel Channel_A Channel Channel Channel_A Chane Channel_A Channel_A Channel_A	el_B			Reverse Save Ext. trigger
Timebase Scale: 500 us/Div X pos.(Div): 0	Channel A Scale: 10 V/Div Y pos.(Div): 0	Channel B Scale: 5 V/D Y pos.(Div): 0	Level: 0	A B Ext
Y/T Add B/A A/B Precautions:	AC 0 DC	VIJATAVVAJA	- Single	Normal Auto None

- 1. Avoid loose connections
- 2. Do not switch on power supply while making connections
- 3. Handle components and apparatus carefully


CLASS A POWER AMPLIFIER USING BJT

AIM:

To construct and find the Gain of the class A power amplifier using BJT.

Experimental Requirements: PC loaded with Multisim

Circuit Diagram:

Design:

$$\eta = \frac{output \ power}{input \ power} \times 100 = \frac{P_{out}}{P_{in}} \times 100$$
$$\eta = \frac{P_{ac}}{P_{dc}} \times 100$$

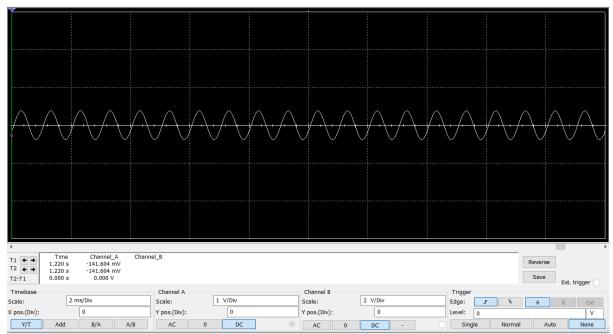
17

$$\eta = \frac{V_m I_m}{2V_{CC} I_C} \times 100$$

We know that

$$V_m = \frac{V_{max} - V_{min}}{2} \cong V_{CEQ} \cong \frac{V_{cc}}{2}$$

 $I_m \cong I_C$


Procedure:

1. Open the Multisim software in the system.

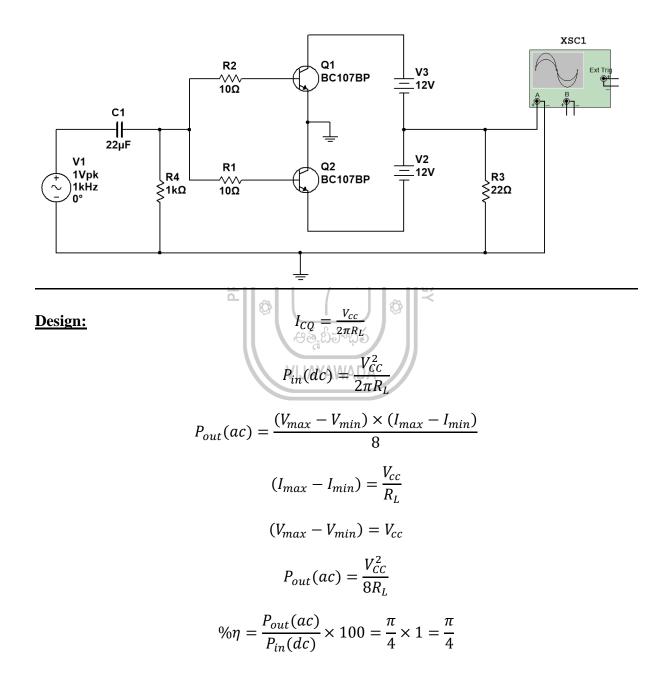
2. Build the circuit as shown in the diagram.

3. Calculate the efficiency of the Class A power amplifier.

Waveform:

Precautions:

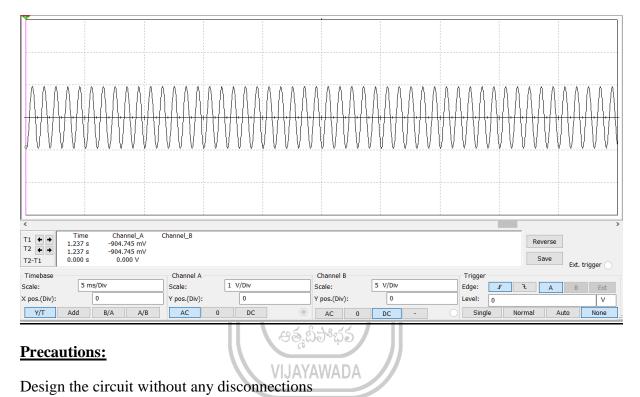
Design the circuit without any disconnections


CLASS B COMPLIMENTARY SYMMETRY AMPLIFIER

AIM:

To find the efficiency of a complimentary symmetry class B power amplifier.

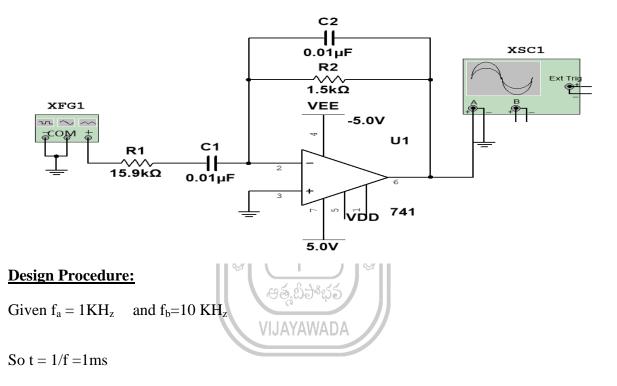
Experimental Requirements: PC loaded with Multisim.


Circuit Diagram:

Procedure:

- 1. Open the Multisim software in the system.
- 2. Build the circuit as shown in the diagram.
- 3. Calculate the efficiency of the Class A power amplifier.

Waveform:


RC DIFFERENTIATOR USING OP AMP

AIM:

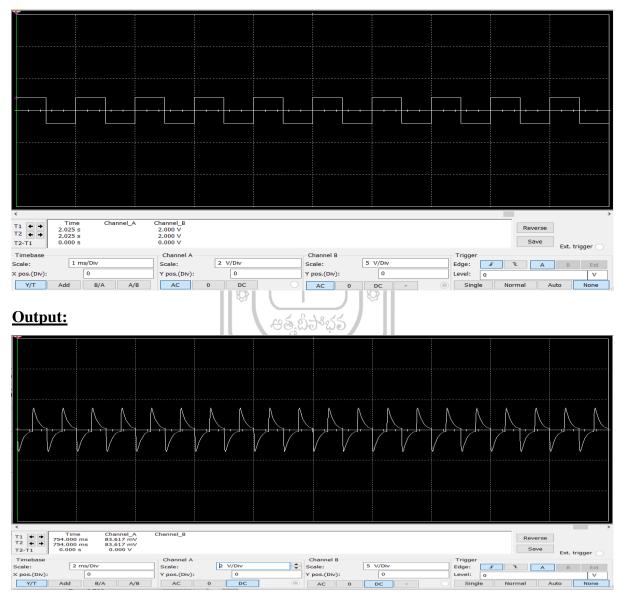
To Design and Simulate the RC differentiator using Op-Amp

Experimental Requirements: PC loaded with multisim software

<u>Circuit Diagram:</u>

Design equation $T=1/2\pi R_1C_1$ Let $C_1=0.01 \ \mu F$ then $R_1=15.9k\Omega$

For $f_a = 10 f_b$


Take $R_f=10R_i=1.5k\Omega$ and $C_f=0.01 \ \mu F$

Procedure:

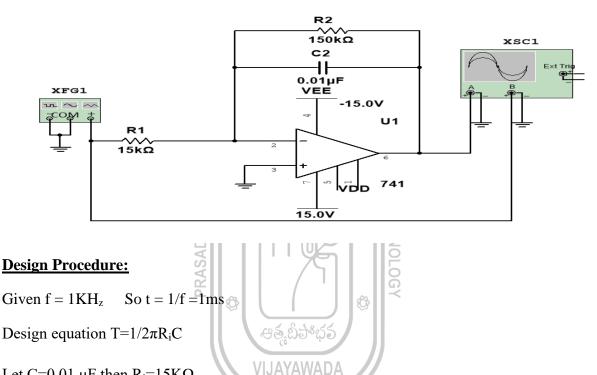
- 1. Switch on pc
- 2. Open multisim software
- 3. Setup the circuit on and check the connections.
- 4. Give $Vi=2V_{pp}$, 1KHz square wave.
- 5. Keep the oscilloscope in AC coupling mode.
- 6. Observe input and output on two channels of the oscilloscope simultaneously.
- 7. Draw the input and output waveforms on the graph

Waveforms:

Input:

Precautions:

- 1. Check your connections before observing graph
- 2. Handle your pc carefully


RC INTEGRATOR USING OP-AMP

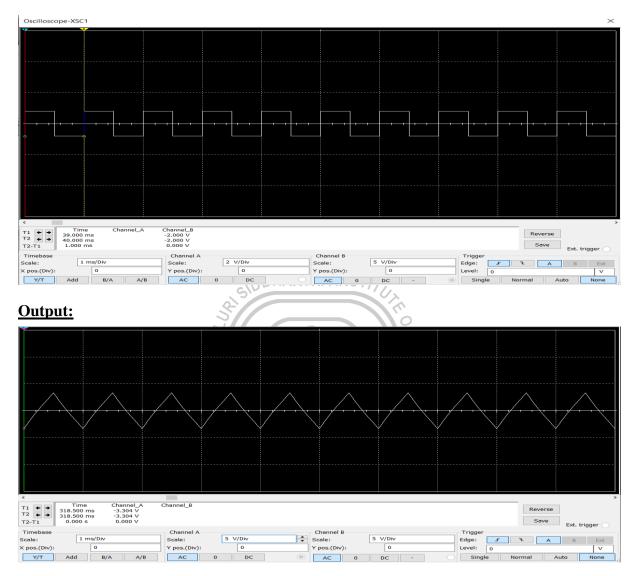
<u>AIM</u>:

To design and setup an integrator circuit using op amp IC741 and plot its response

Experimental Requirements: PC loaded with multisim software

Circuit Diagram:

Let C=0.01 μ F then R_i=15K Ω


Take $R_f=10R_i=150K\Omega$

Procedure:

- 1. Switch on pc
- 2. Open multisim software
- 3. Setup the circuit on and check the connections.
- 4. Give Vi= 2Vpp, 1KHz square wave.
- 5. Keep the oscilloscope in AC coupling mode.
- 6. Observe input and output on two channels of the oscilloscope simultaneously.
- 7. Draw the input and output waveforms on the graph

Wave forms:

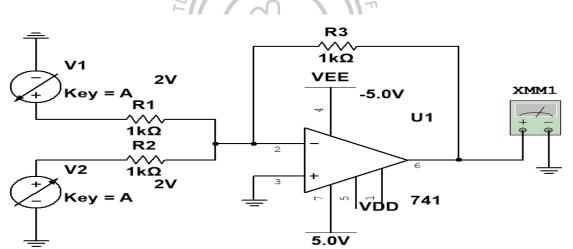
Input:

Precautions:

- 1. Check your connections before observing graph
- 2. Handle your pc carefully

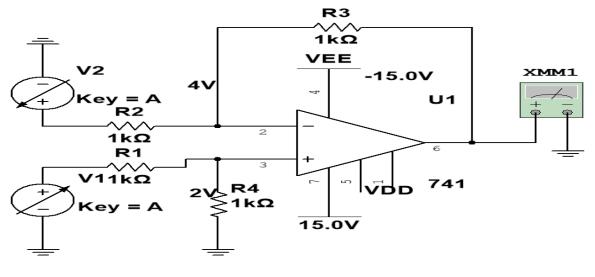
ADDER AND SUBTRACTOR CIRCUITS USING OP-AMP

AIM:


To design and verify the adder and subtractor circuits using Op-amp circuits.

Experimental Requirements:

- 1. IC 741
- 2. 4 Resistor $(1K\Omega)$
- 3. Regulated power supply
- 4. IC breadboard trainer
- 5. Patch cords
- 6. Multimeter


Circuit Diagram:

Adder:

SID DHARTHA INS 7

Subtractor:

Design Procedure:

Adder circuit:

 $V_o = -(V_1 + V_2)$

If $V_1 = 2V$ and $V_2 = 2V$, then

 $V_0 = -(2+2) = -4V.$

Subtractor circuit:

 $V_{o} = V_{2} - V_{1}$

If $V_1=4$ and $V_2=2$, then

 $V_o = 4 - 2 = -2$

Procedure:

Adder circuit:

- 1. Connect the circuit as per the diagram.
- 2. Apply the supply voltages of +15V to pin7 and pin4 of IC741 respectively.
- 3. Apply the inputs V_1 and V_2 as shown.
- 4. Apply two different signals (DC/AC) to the inputs.
- 5. Vary the input voltages and note down the corresponding output at pin 6 of the IC 741 adder circuit.
- 6. Notice that the output is equal to the sum of the two inputs.

Subtractor circuit:

- 1. Connect the circuit as per the diagram.
- 2. Apply the supply voltages of +15V to pin7 and pin4 of IC741 respectively.
- 3 Apply the inputs V_1 and V_2 .
- 4. Apply two different signals (DC/AC) to the inputs.
- 5. Vary the input voltages and note down the corresponding output at pin 6 of the IC 741 subtractor circuit.
- 6. Notice that the output is equal to the difference of the two inputs.

Output:

Adder:

Subtractor:

Adder circuit:

V ₁	V ₂	V _{o/p}

Subtractor Circuit:

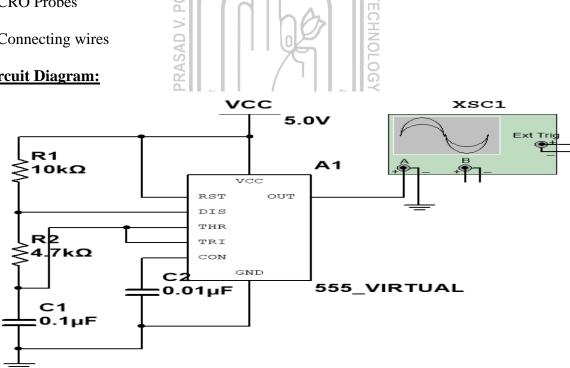
V ₁	V_2	V _{O/P}
	DHARTHA INS T/>	

Precautions:

- 1. Make null adjustment before applying the input signal
- 2. Maintain proper $V_{CC}\,$ levels
- 3. Don't switch ON power supply while making connections.

ASTABLE MULTIVIBRATOR USING 555 TIMER

AIM:


To Design and verify an Astable multivibrator using 555 timer

. POTLUR,

Experimental Requirements:

- 1. <u>IC 555 Timer</u>
- 2. Resistors (10 K Ω , 4.7 K Ω)
- 3. Diode (IN 4007)
- 4. Capacitors (0.1µF, 0.01µF)
- 5. CRO
- 6. Patch cards
- 7. CRO Probes
- 8. Connecting wires

Circuit Diagram:

SIDDHARTHA INS TI

Design:

Theoretically without diode charging time Tc is given by Tc= $0.69(R_1+R_2)$ C1,

Discharging time Td is given by $Td = 0.69R_2C_1$

The frequency f is given by $f = 1.45/(R_1+2R_2)C_1$

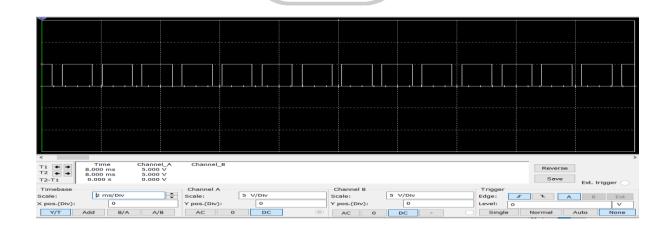
% of Duty cycle is $(T_c / (T_c + T_d))*100$

Procedure:

- 1. Connections are made as per the circuit diagram.
- 2. Pins 4 and 8 are shorted and connected to power supply Vcc (+5V)
- 3. Between pins 8 and 7 resistor R_1 of $10K\Omega$ is connected and between 7 and 6 resistor R2 of $4.7K\Omega$ is connected. Pins 2 and 6 short circuited.
- 4. In between pins 1 and 5 a Capacitor of 0.01μ F is connected.
- 5. The output is connected across the pin 3 and GND.
- 6. In between pins 6 and GND a Capacitor of 0.1μ F is connected.
- 7. Theoretically without diode charging time Tc is given by $T_c=0.69(R_1+R_2) C_1$, Discharging time T_d is given by $T_d=0.69R_2C_1$

The frequency f is given by $f = 1.45/(R_1+2R_2)C_1$

% of Duty cycle is $(T_c / (T_c + T_d))*100$ THA INS 7/7


- 8. Practically T_d and T_c are measured and wave forms are noted and theoretical Values are verified with practical values
- 9. Connect diode between pins 7 and 2.
- 10. Theoretically with diode connected charging time is given by Tc=0.69R₁C₁ Discharging time is given by

VIJAYAWADA

 $Td=0.69R_2C_1$

11.Practically T_d and T_c are noted and verified with theoretical values.

Wave Forms:

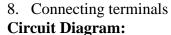
Y					
		\sim			~~~~
< T1 Time T1 T2 T2 T2 T1 T2	Channel_A Channel_ 2.299 V 2.299 V 0.000 V				Reverse Save Ext. trigger
Timebase Scale: 2 ms/Div X pos.(Div): 0 Y/T Add B/A	Channel A Scale: Y pos.(Div) A/B AC	5 V/Div	Channel B Scale: 5 V/Div Y pos.(Div): 0 AC 0 DC	Trigger Edge: F Level: 0 Single 1	L A B Ext V V Normal Auto None

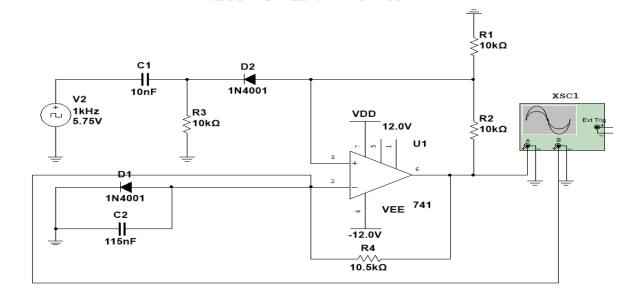
Precautions:

1. Make null adjustment before applying the input signal

2.Maintain proper Vcc levels OHARTHA INS זי 3.Handle components care fully Result:

MONOSTABLE MULTIVIBRATOR USING 741 OP- AMP


AIM:


To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated and to compare it with that of theoretical value.

SIDDHARTHA INS TIT

Experimental Requirements:

- 1. Operational amplifier(IC741)
- 2. CRO
- 3. RPS
- 4. 4 Non inductive fixed resistors (R₁, R₂, R₄ and R₅)
- 5. 1 Non inductive Variable resistor (R₃)
- 6. 2 Capacitors(C_1 and C_2)
- 7. 3 Diodes(D_1 , D_2 and D_3)

Design Procedure:

$$V_C = -V_{out} + (V_{out} + V_D)e^{-t/\tau}$$

At instant, $t = \tau$ and $V_c = -\beta V_{out}$, where $\beta = \frac{R_2}{R_1 + R_2} = Feedback Factor$

So,
$$-\beta V_{out} = -V_{out} + (V_{out} + V_D)e^{-t/\tau}$$

31

where Time Constant, $\tau = R_3 C_1$

$$V_{out}(1-\beta) = V_{out} \left(1 + \frac{V_D}{V_{out}}\right) e^{-T/\tau}$$

In general, $V_D \ll V_{out}$

so $(1-\beta) = e^{-T/\tau}$

$$T = R_3 C_1 \log_e \frac{1}{1 - \beta}$$

 $T = 0.69R_3C_1$

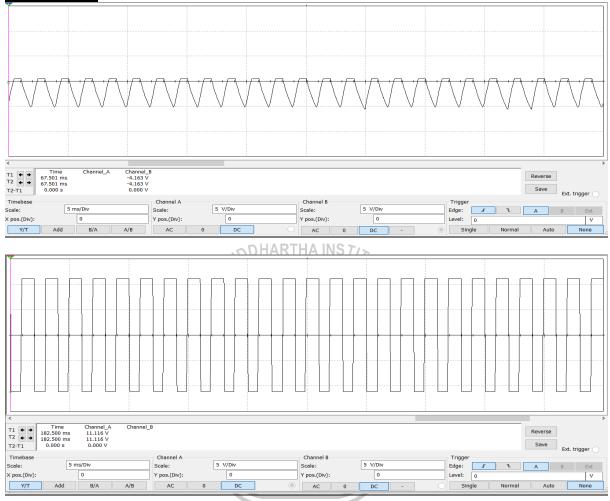
Substuition of $\beta = \frac{R_2}{R_1 + R_2}$, assume $R_1 = R_2$ gives $\beta = \frac{1}{2}$. Upon substitution of these values in above equation, gives

Procedure:

1. Connect the circuit as shown in the figure.

2. Take the $R_1=R_2=1K\Omega$, $C_1=C_2=0.1\mu F$ and $R_3=10K\Omega$ (variable resistance) or any convenient values.

3. Apply the DC power supplies to the terminals (7) and (4) of the operational amplifier.


4. Keep the R₃ value at a convenient value AYAWADA

5. Set the voltage sensitivity band switch of the Y- plate and time base band switch of C.R.O. to the convenient positions such that at least two or more complete square wave forms are observed on the screen of CRO. The length of –ve value or $-V_{out}$ is the duration of the quasi-stable state.

6. Now measure the horizontal length (l) of the quasi-stable state. Also note the time base value (m) of the X-plates of the CRO in the table.

7. From this calculate the time duration of the quasi- stable state. This is the experimental value. Similarly the theoretical value can also be calculated by substituting the values of R_3 , R_1 , R_2 and C_1 in the above given equation.

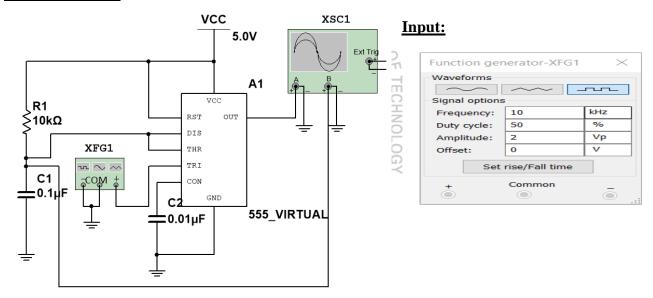
8. Now the experiment is repeated for different values of R_3 by increasing its value in equal steps (Multiples of 100 Ω).

Wave Forms:

Precautions:

- 1. Make sure there are no circuit breaks
- 2. Take the values without any error.

MONOSTABLE MULTIVIBRATOR USING 555 TIMER


AIM:

To design and verify the operation of a monostable multivibrator using 555 timer.

Experimental Requirements:

- 1. 555 IC Timer
- 2. Capacitors(0.1μ F, 0.01μ F)
- 3. Resistors($10k\Omega$)
- 4. Bread board IC Trainer
- 5. CRO
- 6. Connecting wires and patch cords

Circuit diagram:

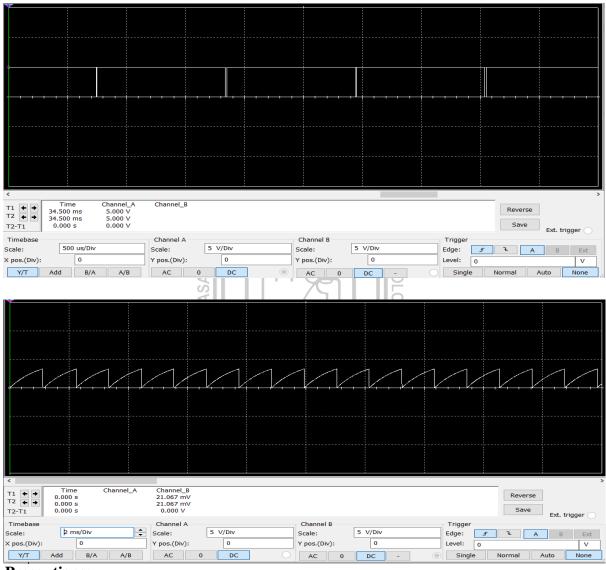
Design:

$$V_o = V_f + (V_i - V_f)e^{t/R}$$
$$\beta = \frac{R_2}{R_1 + R_2}$$

if $V_{sat} \gg V_p$ and $R_1 = R_2$, $\beta = 0.5$

Then T = 0.69RC

Procedure:


1. Connect the circuit as shown in the circuit diagram.

2. Apply Negative triggering pulses at pin 2 of frequency 1 KHz as shown in Fig.

3. Observe the output waveform and capacitor voltage as shown in Figure and measure the pulse duration.

4. Theoretically calculate the pulse duration as Thigh =1.1 RC 5. Compare it with experimental values.

Wave forms:

- **Precautions:**
- 1. Make sure there are no circuit breaks
- 2. Take the values without any error.

ASTABLE MULTIVIBRATORS USING IC 741 OP AMP

AIM:

To design and verify symmetrical and asymmetrical Astable multivibrators using Op- amp 741 ,plot the waveforms and measure the frequency of oscillation

SIDDHARTHA INS T

Experimental Requirements:

Dual power supply +/- 15V -1

Function generator (0- 1MHz) -1

Oscilloscope-1

Bread Board -1

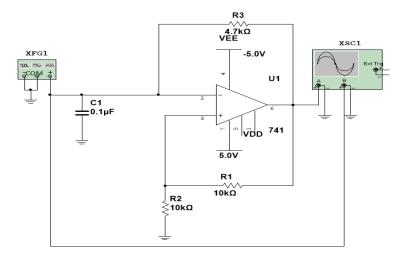
IC741 -1

Resistors-5

Capcaitors-0.1µF -2

Diode 1N4007-2

Probes and connecting wires- as required 5.85%


SYMMETRCAL ASTABLE MULTIVIBRATOR:

POTL

PRASAD V.

Ô

Circuit Diagram:

Input:

ECHNOLOGY

Ô

Function generator-XFG1 \qquad $ imes$							
Waveforms							
\sim	<u> </u>						
Signal options							
Frequency:	1	kHz					
Duty cycle:	50	%					
Amplitude:	4	Vp					
Offset:	0	V					
Set rise/Fall time							
+	Common	ē .:					

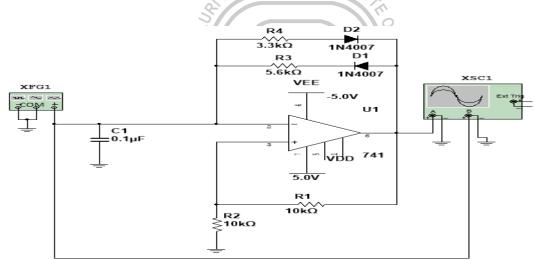
Design:

Given f = 1 KHz

So, $T = \frac{1}{f} = 1msec$

And

$$\beta = \frac{R_2}{R_1 + R_2}$$


Let $R_1 = 10 \text{ k}\Omega$, and $R_2 = 10 \text{ k}\Omega$

Then $\beta = 0.5$

Therefore, T = 2.2RC = 1msec

Let $C = 0.1 \mu F$, then $R = 4.7 k \Omega$

ASYMMETRCAL ASTABLE MULTIVIBRATOR:

Design:

Given f = 1 KHz

So
$$T = T_{ON} + T_{OFF} = \frac{1}{f} = 1msec$$

Also Duty Cycle = $\frac{T_{ON}}{T_{ON}+T_{OFF}} = 0.66$ or 66%.

Solving above two equations, $T_{ON} = 0.66msec$, $T_{OFF} = 0.33msec$

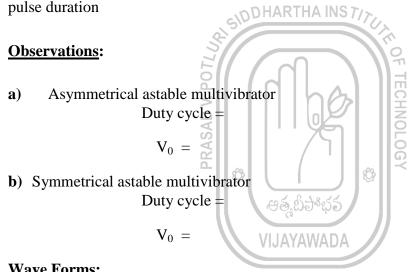
For β =0.5, , $T_{ON} = 1.1 R_{f1} C = 0.66 msec$

37

Let $C = 0.1 \mu F$

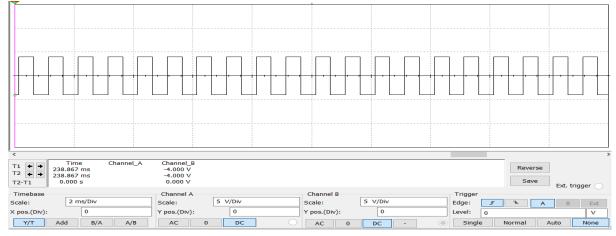
Then R_{fl} = 6.2k Ω , use 5.6K Ω (Std)

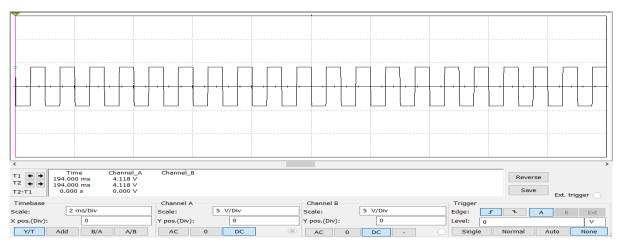
 $T_{OFF} = 1.1 R_{f2} C = 0.33 msec$


Similarly, $T_{off} = 1.1R_{f2}C = 0.33ms$

Then $R_{f2} = 3k\Omega$, use 3.3 K Ω (Std)

Procedure:


- 1. Connect the circuit as shown in the circuit diagram.
- 2. Observe the output waveform and capacitor voltage as shown in Figure and measure the



Wave Forms:

SYMMETRICAL WAVE FORM

ASYMMETRICAL WAVEFORM:

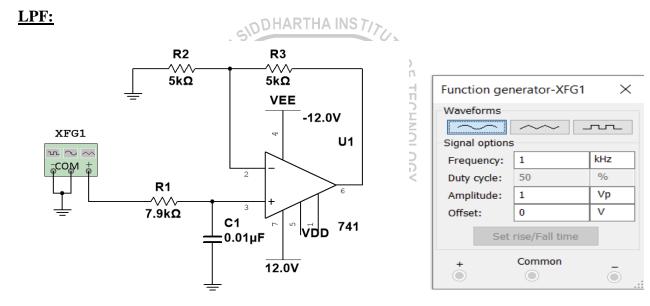
<	· · · ·		>		
T1 + Time Channel_A 79.413 ms -4.116 V	Channel_B		Reverse		
T2 + > 79.413 ms -4.116 V					
T2-T1 0.000 s 0.000 V			Save Ext. trigger		
Timebase Scale: 2 ms/Div	Channel A Scale: 5 V/Div	Channel B Scale: 5 V/Div	Trigger Edge: F & A B Ext		
X pos.(Div): 0	Y pos.(Div): 0	Y pos.(Div): 0	Level: 0 V		
Y/T Add B/A A/B	AC 0 DC O	AC 0 DC -	Single Normal Auto None .		
VIJATAWADA					

Precautions:

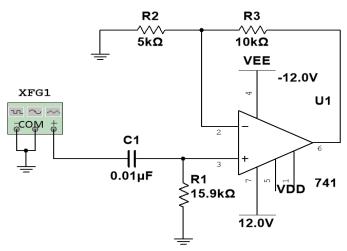
- 1. Make sure there are no circuit breaks
- 2. Take the values without any error.

LPF AND HPF USING OP-AMP

AIM:


To design and the Lowpass and Highpass filters using Op-amp.

Experimental Requirements:


- 1. Signal Generator
- 2. Op-amp(IC741)
- 3. Resistors(1k,1.5k,5k,10k)
- 4. Capacitor $(0.1 \mu f)$
- 5. Linear power supply
- 6. Digital storage oscilloscope(DSO)

Circuit Diagram:

HPF:

40

Design :

$$f_c = \frac{1}{2\pi RC} = \frac{1}{2\pi \tau}$$
, where $\tau = RC$
 $Gain = \left(1 + \frac{R_f}{R_i}\right)$

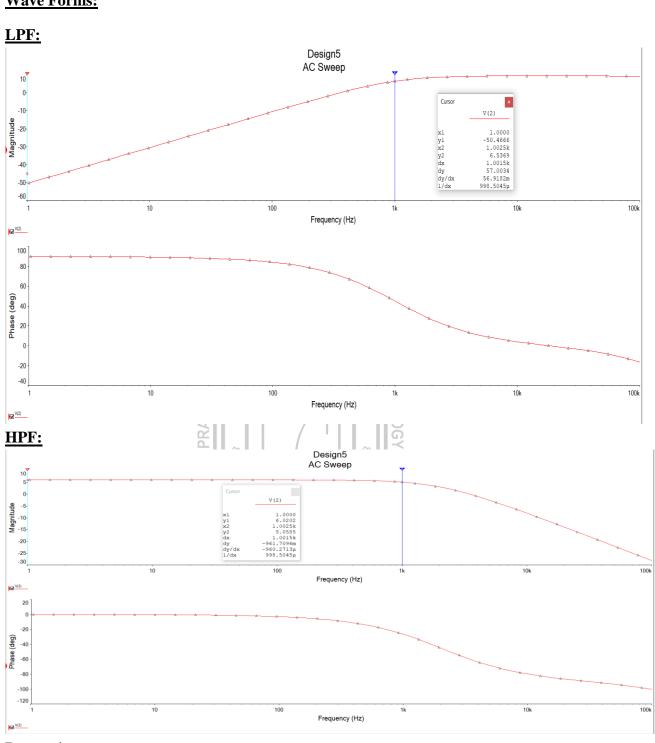
Procedure:

1. Connect the circuit as shown in the diagram.

2.Connect the DSO to the probes and switch it on.

<u>3.</u>Check the graph for both positive and negative voltage and note down the output.

Tabular Forms:


Lowpass Filter:

Input Output Gain Frequency (Hz) Voltage (V)		HAINSTIT	DHART	
Od 'A GASAR	Gain in dB	Gain	Output	Input
DOTOR ASAD			Voltage (V)	Frequency (Hz)
SVAd B Cry B LOCY			AD V. H	
తి ఆత్యబిపిశిభవ			PRAS	
		19455 B		
Highpass Filter: VIJAYAWADA			VIIAV	Highnass Filter.

Г_			
Input	Output	Gain	Gain in dB
Frequency (Hz)	Voltage (V)		
riequency (IIZ)	() on age ()		

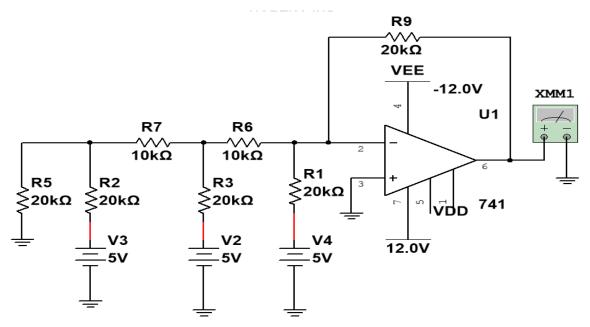
41

Wave Forms:

Precautions:

1.Make sure that there are no loose connections 2.Power off the supply while making the connections **<u>Result:</u>**

4-BIT DAC USING OP-AMP


AIM:

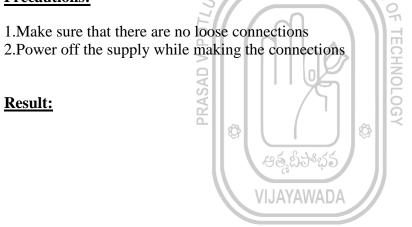
To construct and to study the Digital to analog convertor circuit using Op-amp.

Experimental Requirements:

- 1. IC741
- 2. Multimeters patch
- 3. Connecting cards
- 4. Resistors (1k,2k,8k)
- 5. IC breadboard trainer

Circuit diagram:

Procedure:


- 1. Connections are made as per circuit diagram.
- 2. Pin2 is connected to resistor $1M\Omega$ and ground.
- 3. $+V_{cc}$ are available at Pin7 and $-V_{cc}$ is applied atPin4.
- 4. Output is taken between pin6 and ground
- 5. Voltage at each bit (vr) is found at bits b0, b1, b2, b3.
- 6. Pin3 of op amp is connected to resistor $1k\Omega$ and is given to b3 (msb).
- 7. A resistor of $2k\Omega$ is connected between pin2 and pin 6 of op amp

Tabular forms:

D3	D2	D1	D0 R-2R Lade		DAC(V)
				Theoretical	Practical

Precautions:

Result:

SIDDHARTHA INS TIT